

Nulling self calibration D. Defrère and B. Mennesson

Hi-5 kickoff meeting -- Liège, Oct. 2-3

Given a time series of interferometric flux detected around the central dark fringe *"WHAT IS THE NULL ?!"*

By "null", we actually mean the astrophysical quantity given by $N^{as} = (1 - IV_BI) / (1 + IV_BI)$, which is a property of the target, not the instrument.

By "null", we actually mean the astrophysical quantity given by $N^{as} = (1 - IV_BI) / (1 + IV_BI)$, which is a property of the target, not the instrument.

Hi-5

Example of nulling data

By "null", we actually mean the astrophysical quantity given by $N^{as} = (1 - |V_B|) / (1 + |V_B|)$, which is a property of the target, not the instrument.

By "null", we actually mean the astrophysical quantity given by $N^{as} = (1 - |V_B|) / (1 + |V_B|)$, which is a property of the target, not the instrument.

Limitations

2015/2/8

LBTI results

 Absolute calibration to 0.05% level (Defrère et al. 2016) despite ~350nm of fast-phase variations

PFN results

NSC requirements

- Need single-mode fringe tracked data (< λ /10 rms) sampled faster than atm coherence time
- Need some photometric and background measurements close in time (within 1 min)
- Need dispersed data if long baselines used
- Perfect for Palomar Fiber Nuller and any fringe tracked fiber based dispersed LB interferometer!
- Does it work for the visibility? YES!

PIONIER conceptual scheme

Figure 2. Pionier conceptual scheme

Beam combination scheme

- L- and M-band beam combiner
- * At least four beams
- * Single-mode fibers and/or integrated optics
- A few possible architectures
- ✓ PIONIER-like 4T-ABCD combiner
- ✓ Multi-telescope nulling interferometer
- ✓ Combination of nulling + clossure phases
- Spectroscopic capabilities

Guidelines for high-contrast interf.

- "Simple" instrument to minimize sources of systematic errors
- Single-mode fibers
- Fringe tracker
- Dispersed data
- Polarization control
- Fast data acquisition

