

Prospects with the Crossed Cube Nuller

François Hénault Institut de Planétologie et d'Astrophysique de Grenoble Université Grenoble-Alpes, Centre National de la Recherche Scientifique BP 53, 38041 Grenoble – France

> Alain Spang Laboratoire Lagrange, Université Côte d'Azur Observatoire de la Côte d'Azur, CNRS, Parc Valrose, Bât. H. FIZEAU, 06108 Nice – France

Hi-5 Kickoff meeting

Liège, 03/10/17

Plan of presentation

- General view of the Crossed-Cubes Nuller
- Design
- Cubes polarization model
- Use as a nulling combiner
- Preliminary manufacturing requirements
- Experiment and test results
- Discussion / Main advantages
- Integration into a Fully achromatic nulling interferometer (FANI)
 - Principle
 - Simulated fringe patterns
 - Potential SNR gain
- Conclusion

General view of the Crossed-Cubes Nuller (CCN)

- Two "crossed" beamsplitter cubes generate four parallel beams, recombined axially. Only two of them are used to create a "null" at the focal plane centre
- It is independent of wavelength, chromatic flux unbalance and polarization orientation

Principle

- Both cubes have their semi-reflective (SR) planes perpendicular one to the other
- The input beams propagates parallel to both cubes SR layers
- It is spitted into four parallel beams, being recombined axially
- A null is created at the focal plane centre between the two diagonal, intensity symmetric outputs
- It is independent wavelength, chromatic flux unbalance and polarization orientation
- When used in reverse sense, this is actually an Achromatic phase shifter (APS)
- "Cheapest nuller in the world: Crossed beamsplitter cubes," Proceedings of the SPIE vol. 9146, n°914604 (2014)
- "Experimental demonstration of a crossed cubes nuller for coronagraphy and interferometry," Proceedings of the SPIE vol. 9907, n°99072H (2016)

Hi-5 Kickoff meeting

Cubes polarization model

- Shown in coronagraph mode (interferometric mode is in reverse sense)
- Only the two diagonal symmetric ports are usable for nulling

Use as a nulling combiner – polarization model

Use as a nulling combiner – polarization model

Preliminary manufacturing requirements

• If OPDs are compensated for by optical delay lines, there remains one tight specification: Flux balance < 0.1 %

PARAMETER	REQUIRED VALUE	EQUIVALENT NULLING RATE	REMARKS
Operating wavelength	$\lambda = 10 \ \mu m$		Depending on science requirements
Spectral range	8-12 μm		Depending on science requirements
Semi-reflective layer (SR)			
Transmission factor	50 ± 0.1 %		On full spectral band
Reflection factor	50 ± 0.1 %		On full spectral band
Flux mismatch	< 0.1 %	1.0E-06	On full spectral band
Anti-reflective coating (AR)	Standard		$\lambda/4$ AR coating
Geometrical parameters			
Cube hypotenuse	$75.5\pm0.1~\text{mm}$		Case of ZnSe material
Transmitted pathlength in glass	$21.4\pm0.1~\text{mm}$		Case of ZnSe material
Reflected pathlength in glass	$21.4\pm0.1~\text{mm}$		Case of ZnSe material
Pathlength difference in glass	< 0.005 µm	9.8E-06	Only applicable to coronagraph
Angular errors	< 3 arcmin	7.6E-07	For both SR/AR faces, including pyramid
Wavefront error	$<\lambda/4$ PTV	0.0E+00	For both transmitted and reflected beams, on
			each sub-pupil
	Total Null (RMS sum)	4.6E-06	

Hi-5 Kickoff meeting

Experiment and test results

• At Institut de Planétologie et d'Astrophysique de Grenoble (June 2016)

• At Laboratoire Lagrange (Observatoire de la Côte d'Azur): New tests in preparation

Two beams $(A_T A_R - A_R A_T)$

First fringes $N \approx 1.8 \ 10^{-3}$

Experiment and test results

Discussion / Main advantages

- Simple, compact, low mass and volume
- Reasonable manufacturing tolerances
- Potentially not expensive
- High throughput, close to maximum
- Good candidate for future space missions characterizing extra-solar planets atmospheres
 - Can also be implemented into a nulling coronagraph telescope

The Crossed Cube Nuller could also be integrated into a

Fully achromatic nulling interferometer (FANI) for high SNR exoplanet characterization

Proceedings of the SPIE vol. 9605, n°960512 (2015)

Classical interferometer

Fully achromatic nulling interferometer

Simulated fringe patterns (Fizeau interferometer)

Also covered in the original paper

- Mathematical analysis
- Dimensioning the dispersive element
- Preliminary optical design
- Preliminary tolerancing (no critical alignment)

Geometrical parameter	Tolerance
Grism mirror translation along Z-axis Grism mirror decenter (along X' and Y' axes) Grism mirror tilt around X'-axis Grism mirror tilt around Y'-axis Grism mirror roll angle(around Z-axis) Grism thickness at centre Grism angle α	$\leq 0.1 \text{ mm}$ $\leq 1 \text{ mm}$ $\leq 5 \text{ degs.}$ $\leq 1 \text{ deg.}$ $\leq 5 \text{ degs.}$ $\leq 0.1 \text{ mm}$ $\leq 1 \text{ deg.}$
θ	C

Potential SNR gain

- Planet detection possible on <u>all</u> bright fringes \rightarrow Higher Signal
- If used as a imaging stellar interferometer, SNR gain $\approx \sqrt{n}$ for read noise
- But:
 - No quantitative study has been done so far
 - May not be useful for all types of spectrographs (IFS ?)

Where should we put the CCN ?

Conclusion

- CCN could have been used to build "PERSEE interferometer in a nutshell"
- Quick and dirty experiment in coronagraph configuration shows extinction below 1/256 bits
 - Next step: Measurements with higher dynamic range (Lagrange)
 - Demonstration in interferometer configuration (reverse) remains to be done

Conclusion

- CCN could have been used to build "PERSEE interferometer in a nutshell"
- Quick and dirty experiment in coronagraph configuration shows extinction below 1/256 bits
 - Next step: Measurements with higher dynamic range (Lagrange)
 - Demonstration in interferometer configuration (reverse) remains to be done

Cn