Astrophotonics

From laser nanostructuration of electro-optic materials to exoplanet research

<u> Guillermo Martin</u>

Institut de Planetologie et d'Astrophysique de Grenoble (FRANCE)

Collaborations:

- FEMTO-ST: ANR RALIS (N. Courjal)
- CEA-LETI: Recombineurs Passifs (P. Labeye)
- PHOTLINE: Recombineurs Actifs (J. Hauden, H. Porte)
- IMEP-LAHC: Simulations (A. Morand)
- LabHC: Femtosecond Laser Writinge (R.Stoian, C. d'Amico)

guillermo.martin@univ-grenoble-alpes.fr

A RAPID OVERVIEW

For astronomical applications (specially, for spatial applications) needs are:

-Integrated optics beam combiners (2D, 3D) & spectrometers (SWIFTS):

Both will generate FRINGES !!!

Can we generate phase modulation without any moving part? ELECTRO-OPTICS

From the Phase and Contrast we will understand the nature of the source

From the Fourier Transform, we will get the emission spectrum of the source

ASTROPHOTONIC (I): MATERIALS

MID IR MATERIALS

INFRARED MATERIALS

MID-IR MATERIALS

Lithium Niobate Transmittance LiNbO₃: 420-5200 nm

Chalcogenides: TeAsSe, As₂S₃, As₂Se₃...

-> Goal: Find IR materials that can be turned into waveguides/fibers

INFRARED MATERIALS

MID-IR MATERIALS

Chalcogenides: Te, Ge, La, S, Se

Wide transmission range

Possibility to change the refractive index by femtosecond laser writing

-> Goal: Fabrication of mid-infrared waveguides and beam combiners

INTEGRATED OPTICS WAVEGUIDES

-> GOAL: To develop single mode waveguides in the target spectral range

ASTROPHOTONICS (I): CONCEPTS

INTEGRATED OPTICS CONCEPTS

BULK OPTICS vs INTEGRATED OPTICS

In order to combine the signal coming from different telescopes, the complexity increases with the number of apertures:

Instead, integrated optics can be a useful alternative:

3 Telescopes 250kg J,H,K bands (R=10000) 4.2m x 1.5m Periodical Re-alignement

4 Telescopes One single device 200g H band (R=8000) 80mm x 15mm *No alignement*

INTEGRATED OPTICS FOR SPACE

For spatial applications: Reducing weight, volume and degrees of freedom is compulsory

DARWIN/TPFI

FIGURE 1.6 - Vue d'artiste de DARWIN/TPF-I dans sa solution finale. Source : cnes.fr

4T combination Mid-IR (5-20um)

Engineering Realization of FKSI Telescope Siderostats (2) nstrument Module (# IM Radiators (2 Telescoe nstrument Sur Boom (2) Sensors (on tip of each boom) Sunshield 12.5m Instrument / Bus Sunshield Isolation Structur Dimbaled X-Band High Gain Antenna IM Support Structure Deployed 8-Band Omni Stowed (fixed un Sensors 8-Band Omni Solar Array Radiator

FKSI Proposal. William Danchi

PEGASE

FIGURE 1.7 - Vue d'artiste de PÉGASE. Source : obspm.fr

2T combination Mid-IR (2.5-5um)

2T combination Mid-IR (3-18um)

INTEGRATED OPTICS FOR SPACE: CUBESATs

A new era of satellites: Low cost, rapid launch (5 years)

PICSAT and FIRST-Lithium projects

Collaboration LESIA – IPAG

First demonstrations of cubesat interferometry

Le projet FIRST-S

- Dérivé de FIRST, autour des composants d'optique active au cœur de l'ERC Lithium
- Cubesat 3U pour caractériser la lumière exozodiacale
- Atelier Nanosat à Meudon (Nov. 2013)

PAYLOAD

	••• <> E		E			spa	caflight.co	n		c 0	0.0
	SPACEFLIGHT						La	Get Updates Email Address Go .aunch Networks Systems 🚍			
PICSAI	SCHEDULE & PRICING Secondarity is the only redentiers provider to offer published commercial pricing. Our list										
CUDESAT Project reduction of lucro hardware and a set of law of lucro hardware and a set of law of lucro hardware and lucro h									18 launch. I JS with your	Schedule & Pricing Payload Users Guide Mission Resources	
https://wiesst.chem.chelsion.ch/	Peptred Type 2	32 EJ	12 9	1 kg 100 kg	150 kg	200 kg	111 kg 42	7 kg* 150 k	y" 1000 kg"	-	-
nttds://dicsat.odsdm.tr/dicsat/	Height/Division 10	0.00 10.00	22.65	st 50	60	80	100 1	50 200	200	Latest News	
b	Withean 10 Monochij Price - LID 55 Price - 010 55 Prices are in thou	0.00 22:65 8 10 846 \$646 845 \$1,400 usands (US	22.68 20 5866 51 58,733 54 SD).	se so se 133 ,550 \$53,63 ,830 \$6,40	60 162 1 \$4,993 1 \$4,993	80 200 \$1,830 1 \$11,350 5	180 380 4 17,868 \$10 14,888 6	50 750 (303 \$88,0 AL CAU	1000 05 \$246,000 L CALL	Spacellight's 2017 SSO-A dedicated rideshare mission at near capacity with spacecraft from 10 countries SEATULE, Oct. 11, 2018 – Spaceflight Industries,	
	Prices shown are standard list prices and do not account for launch specifics. Standard payment structure • 10% at Launch Reservation Down Resment									a next-generation space compare enabling access to space Read More	ny.
	• 30% at Launch minus 24 months (or at Launch Service Agreement signing if less than 24 months) • 20% at Launch minus 19 months									Latest Blog	
	20% at Launch minus 13 months 15% at Launch minus 7 months									One of our biggest, and most valued, differentiators in the	

- Etude design préliminaire (stage été 2014 : Salima Aroub)
- Communication SPIE (aout 2014)
- Symposium Cubesat en Suisse (oct 2014) : Contact ISIS
- Journée Esep (Dec 2014)

https://www.isispace.nl/cubesats/

SINGLE MODE FIBERS: PHOTONIC LANTERNS

Photonic Lanterns for pupil remapping:

Bundle of single-mode fibers, that will be reconfigured to obtain interference fringes on the detector

For mid-IR applications standard functions (Y junctions, X-couplers, 1xN spliiters are not available).

FIRST (Fibered ImageR for a Single Telescope)

Huby et al. 2012

From HDR Sylvestre Lacour

COMPLEX BEAM COMBINERS: Multi-Apertures & Hybridation

Higher Number of Telescopes : Hybridation Glass-Niobate

Collab. avec S. Lacour LESIA

Instrument FIRST (SUBARU Telescope) 3x 9 « télescopes »

Proposed Design

Assembling photonic elements

V-groove d'entrée 9T

72 Modulateurs de Phase

Puce 9 -> 72 -> 36

V-groove de sortie 36 Y

COMPLEX 2D BEAM COMBINERS

Achieve complex functions in a compact device:

-> GOAL: Obtain good transmission, achromatic functions, avoid polarization issues...

COMPLEX 2D BEAM COMBINERS

Obtain fringes and photometry in a single device: Non redundant combination of input telescopes

-> GOAL: Obtain non-redundant fringes of the inputs

RESULTS ON THE 3T MULTIAXIAL COMBINER

Fringes and Photometry in a single shot measurement: Passive Device (Glass)

Contrast > 89%

COMPLEX 3D BEAM COMBINERS

Use the vertical dimension to avoid in-plane crossing and crosstalk:

Laser-written waveguides

Design of complex multi-T combiners

Simultaneous 3T injection and scan

Slit-shaping

Multi-core

LASER WRITING BASICS

Fig. 8. Example of refractive index changes in the various substrates. (a) Positive index change in fused silica based on defect-driven densification with guided near-IR mode. (b) Spontaneous self-arrangement of nanogratings in fused silica with anisotropic scattering patterns. (c) High contrast index change in Ge-doped S-based chalcogenide glass using shaped ps pulses. (d) Negative index change in LiNbO₃ determined by mechanical rarefaction [source LaHC].

Credits: R. Stoian (IPAG – LaHC project)

ASTROPHOTONICS (I): CONCEPTS

ELECTRO-OPTICS

Internal Modulation using LiNbO3

ELECTRO-OPTIC EFFECT

Orders of magnitude:

Internal modification of optical path delay -> phase modulation :

Example: 35V for 5 fringes in a Kband modulator

-Chromatic effect -Problematic for long OPD scans

ELECTRO-OPTIC WAVEGUIDES

LiNbO3, BGO, SBN, YCOB...

-Classical waveguides (ion in-diffusion, proton exchange)

- LiNbO3 -Well known -r=30pm/V -Anisotropic
- BGO -r= 3pm/V -Isotropic
- SBN -r= 1300pm/V -Anisotropic -Low Curie T

-Laser-written waveguides: J.R.V. de Aldana, A. Rodenas

Cladding and dual line Type II BGO Waveguides Multiscan Type I BGO Waveguides

INTEGRATED OPTIC CONCEPTS

Challenge:

- -On-chip phase and intensity modulation
- -Achieve achromatic phase modulation
- -Combine 3 telescopes or more
- -Both TE and TM polarizations (no birefringence)
- -Low propagation losses
- -Low driving voltages

Astrophysical Needs:

-Acheve high contrast fringes -> Nulling Interferometry -Achieve High spectral resolution -> Integrated Spectrometers

COMPLEX 2D BEAM COMBINERS

The 2T ABCD Concept: **DEMO!**

The interference fringes are sampled using 4 data, phase shifted:

COMPLEX 2D BEAM COMBINERS

The 2T ABCD Concept:

Signal 4-6 modifies the coupling ratio; Signal 1-2-3 shifts the relative phase (fringe scan)

ASTROPHOTONICS (II): HIGH CONTRAST INTERFEROMETRY

NULLING INTERFEROMETRY IN ASTROPHYSICS

NULLING INTERFEROMETRY: BULK vs INTEGRATED OPTICS

Nuller for DARWIN (Wallner 2003)

Mid IR Waveguides

High Contrast: 40dB (C>99.98%)

Optical Functions (Coupler, Y...)

Multiple Beam Combining (2T, 3T...)

CONTROLLING PHASE AND INTENSITY

Active control of relative photometry and phase

-Difficulty 1: Scan the fringe enveloppe: (typ. 10) -> High modulation V -Difficulty 2: Achromatic behavior

Niobate de Lithium: Monochromatic MZ Modulation

• Fringes modulation at 3.349μm (L Band)

Mach-Zehnder Modulators and Y-junctions: High rejection ratio and on-chip L band scan

20mm x 10mm LiNbO₃ sample

On-Chip mid-IR Nulling (36dB) @ 3.39um

Niobate de Lithium \rightarrow Directionnal Couplers

Active Directionnal Couplers: On-Chip Amplitude Tuning @ 3.39um

Phase modulation: Differential dispersion

And refractive index also depends on the wavelength

Problem of differential dispersion

$$I_{OUT}(x) = I_1 + I_2 + 2\sqrt{I_1 I_2} \cos \varphi(x)$$

$$\varphi(\lambda) = A_0 + \frac{A_1}{\lambda} + \frac{A_2}{\lambda^2} + \frac{A_3}{\lambda^3}$$
$$\Leftrightarrow$$
$$\varphi(\sigma) = A_0 + A_1\sigma + A_2\sigma^2 + A_3\sigma^3$$

FIGURE 1.22 – Illustration de l'effet des différents ordres de courbure de phase sur l'interférogramme large bande (simulations). A gauche : la densité spectrale d'énergie de la source et la phase du paquet de frange en fonction de σ pour la différence de marche nulle. A droite : le paquet de franges obtenu.

EO effect is chromatic: $r_{33}(\sigma)$ et $n(\sigma) \rightarrow$ Even in an ideal Y-junction the dispersion is visible, at high modulation voltages

This can be used to compensate an initial differential chromatic effect

ASTROPHOTONICS (III): SPECTROMETRY

INTEGRATED SPECTROMETERS

Spectrometry Basics

Diffraction Gratings

The Michelson approach

Fourier Transform Spectrometers

-Résolution Spectrale: ${\rm R}\approx {\rm L}/\lambda = 10000$ for L=1cm @ $\lambda{=}1\mu m$

-Etendue Spectrale: $\delta \sigma \approx 1/\delta L => \delta \lambda = 10 \text{nm for } \delta L = 10 \mu \text{m}$

Swifts

Stationary-Wave Integrated Fourier Transform Spectrometer

Nano-detectors in evanescent field

Wave-guide core

Wave-guide Substrate

Stationary wave

• The SWIFTS concept is based on a weak non-perturbing measurement along a standing interference within a wave guide

See Le Coarer et al, Nature Photonics 2007

- where sub-wavelength scale detectors pick up the evanescent field
- The overall sensitivity results from a collective effect of the set of nanodetectors, each one detecting a slight amount of the light propagating in the waveguide.

SWIFTS resolution

- R: number of fringes between first and last detectors
- $\delta \sigma \approx 1/2nL$ $R \approx 2n L/\lambda$
- **L**: Length between first and last detector (20 μ m)
- **n: effective index** (1.5)
- λ : Wavelength (1.5 μ m)
- **R= 40 in this example** ($\delta\lambda \approx 37.5$ nm)

10cm long instrument provide: **R**= **200 000 or 0.033 cm**⁻¹ ($\delta\lambda \approx 7.5$ pm)

Note: an under-sampling of the fringes results in a reduced operation bandwidth limited by the detector pitch p :

 $\Delta \sigma = 1/4n.\Delta z$ or $\Delta \lambda = \lambda^2/4n.\Delta z$

a 18 μ m pixel in this case induces $\Delta\lambda \approx 20 \text{ nm}$

In order to recover the fringes, use of nanodots or nanogrooves

Guide avec centres de diffusion (sans injection): -> FEMTO-ST

Guide avec centres de diffusion (avec injection):

Le signal échantillonné est alors récupéré par un détecteur collé au dessus du guide:

Barrette SWIFTS

Détecteur sur SWIFTS Matriciel

DIRECTIVITY

Simulations on the effect of Groove geometry on the diffraction efficiency

Simulations on the effect of Groove assembling: Antenna Effect

Collaboration with A.Morand (IMEP-LAHC)

LASER WRITTEN SWIFTS: FOR MID-IR

Use fs laser to write the sampling centers -possibility to obtain large areas

View from top

Laser written IR SWIFTS

Multiplexage: Swifts WIDE

La superposition des interferogrammes sous-echantillones, permet de reconstruire un interferogramme sur-echantillonne

Multiplexage: Swifts WIDE Collaboration avec IMEP-LAHC (A. Morand)

128 x 128 (20um pixel pitch)

Premiers tests d'une lanterne de 16 guides

Interest of an internal modulation (electro-optic) to improve sampling efficiency

« Static » SWIFTS is limited to $\Delta \sigma$ =10nm since distance between sampling centers is too high.

Using an unbalanced MZ allows to set a second « dynamic » fringe pattern over the sampling centers, and scan it actively

Fringe Modulation in a single chip using the Electro-optic effect

L'interférogramme OCT

Depending on the initial unbalance in the MZ, we can set the fringes where needed (but not too far from the edge)

By applying a modulation voltage, we scan the fringes over the grooves

RESULTS:

Recording one sampling center using a Voltage ramp:

Shifting the wide-band fringes under the sampling grooves:

TOWARDS MULTI-T SPECTRO-INTERFEROMETERS

High Spectral Resolution

Grating Waveguide Spectro-Interferometer

4T Device J. Loridat Master M2

Collaboration with UAM-Madrid: Nanoparticles self-assembling

Wide Surfaces (qq mm²) Single Step -> Visit of J.F. Muñoz Martinez ETSI Aeronáutica

Grating Waveguide Surface Spectrometers

Diffraction Grating Spectrometer

2048 pix x 7µm size

G. Martin et al., JLighTech, 2014

Spectromètres AVRUTKSY

Intérêt Avrutsky: Le Multi Télescopes (Spectro Interferomètre)

Bilan d'Etape: Amélioration de l'étendue spectrale SWIFTS; Premiers Résultats Avrutsky

Grating Waveguide Spectrometers

Interest of GWS: Multi Telescope (Spectro Interferometry)

G. Martin et al., Opt. Express 2017

Near Infrared SWIFTS images

Vers un spectro-interféromètre en propagation directe...

Collaboration avec McQuarie University (Sydney)

Projet PHC Fasic, 2016

FFT Amplitude: Pics frange non redondants

ΤF

Zone planaire de sortie (3 AWG empilés)

Image focalisée des sorties à 810nm

Image défocalisée des sorties à 810nm

CONCLUSION

IPAG context: From technological developements to instruments & observation

Thanks for your attention!

