KIN/PFN/LBTI heritage and lessons learned

Eugene Serabyn
Jet Propulsion Laboratory
California Institute of Technology
HI-5 meeting, Liege
Oct 2, 2017

Why Nulling?

• Goal: Improve contrast for faint dust & companion emission very close to bright stars
 - Work inside the few λ/D inner limit of coronagraphy

• For small stellar leaks, the “null depth”, N, is given by
 \[N = \frac{I_{\text{min}}}{I_{\text{max}}} = \frac{(1-V)}{(1+V)} \]
 = ratio of the signal in the destructive & constructive interference states

• For visibilities, $V \approx 1$, i.e., $V \approx 1 - \Delta V$

\[N \approx \Delta V/2 \quad \text{or} \quad V \approx 1-2N \]

Aim to directly measure a small number (N) instead of
delta from unity (V)
How?

- Antiphase a pair of apertures to center a dark interference fringe on a bright star
- Rotation of array (& fringes) modulates off-axis source signals

Stellar leak or null:

\[N = \frac{\pi^2}{16} \left(\frac{\theta_{dia}}{\lambda / b} \right)^2 \]

Signals from off-axis sources:
Green: companion @ \(\frac{\lambda}{2b} \)
Blue: companion @ \(\frac{3\lambda}{2b} \)

Bracewell (1978)
What Wavelength?

• Long (MIR) wavelengths:
 • High thermal background noise
 • to see faint emission, need to remove two stronger signals:
 - star & background
 • Ground-based goal: mainly warm exozodiacal emission in the habitable zone
 • Space: detection of thermal (habitable zone) exoplanet emission

• Short (NIR) wavelengths:
 • Only need to remove one bright emission source - the star
 • But phase phase stability is much worse
 • Goal: inner hot dust (or dust scattering) & hot companions
Nulling Experiments

- BLINC/MMT etc. (Univ. of Arizona) - MIR
- Keck Interferometer Nuller (JPL) - MIR 85/4 LDLs
- Palomar Fiber Nuller (JPL) - NIR 3.2/1.5
- Large Binocular Telescope Int. (UofA) - MIR 14/8
Nulling with the Keck Interferometer

- Need to remove two different bright signals:
 - Strong (coherent) central star (few Jy)
 - Strong (incoherent & noisy) MIR background (10^3 Jy)

 ⇒ need two-step removal

- Nulling star requires fixed null phase

 ⇒ cannot scan null fringe

- Spatial chopping was not an option at Keck (need to use AO)

 ⇒ Use a two-stage interferometer
 - (phase chopping instead of sky chopping)

 ⇒ Need four input beams

Colavita et al.; Serabyn et al.; Mennesson et al. papers
Two stage interferometer:

• Split the two Keck apertures into 4 subapertures

• Null the star symmetrically (fixed phase):
 • Null on 2 parallel, long (85 m) baselines (~ 24 mas fringe)

• Interferometrically combine the 2 nulled outputs:
 • 4 m “cross-combiner” baseline across each aperture:
 • XC fringe spacing ~ 500 mas
 • Scan cross-combiner OPD:
 • Modulates & detects residual coherent emission
 • Incoherent background at d.c. not detected; but contributes noise

• Spatially filter the combined beams (pinhole, not SM fiber)

• Disperse & detect the 4 combined output beams:

• Subaps & pinholes define single-beam FOV: ~ 450 x 500 mas
The Null Measurement

• KIN measures the integrated intensity transmitted by the nuller fringe pattern:

\[N = N_{\text{star}} + \frac{\int S(\theta, \phi) \, t(\theta, \phi) \, d\theta d\phi}{\int S(\theta, \phi) \, d\theta d\phi} \]

given by

\[X_{\text{amp}}(\text{destructive nuller state}) / X_{\text{amp}}(\text{constructive nuller state}) \]

• Source model needed to estimate the total source flux

Null Measurement: Chopping between four fringe states
Stellar Null Leakage vs. Flux

\[N = \frac{\pi^2}{16} \left(\frac{\theta_{\text{dia}}}{\lambda/b} \right)^2 \]

⇒ Both \(F_\nu \) & \(N \) are \(\propto \theta^2 \)

⇒ For a bb star of \(T > 4500\,\text{K} \) & flux density \(F_\nu \) (at \(bl=80\,\text{m} \), \(\lambda=10\,\mu\text{m} \)):

\[N \sim 2F_\nu/T \]

- Nearby A star nulls (e.g. Vega, Fomalhaut) \(\approx 10^{-2} \)
- Nearby G2 star nulls limited theoretically to \(> 10^{-3} \)

⇒ need to calibrate with known stellar leakages (diameters)
KIN System Block Diagram

- Many λs used: MIR: nulling; K-band: fringe tracking; J/H-band: pointing

Control: Sources not bright enough at N for high-speed fringe tracking
K-band phase “fed-forward” to N-band FDL

- Keck Telescopes
- Adaptive Optics
- Dual Subaperture Modules
- Coude & Transport Optics
- Long Delay Lines
- Wavefront Sensor

- N-band FDLs
- N-band ADCs
- Quasistatic H2O dispersion
- N-band fringe phase
- N-band fringe phase

- Beam Compressors
- Intensity Correction
- Tip-tilt Correction
- Dispersion Correction
- Nulling Beamcombiners
- Spatial Choppers
- Cross-Combiners

- K-band Beam-combiners

- FATCAT: K-band Fringe Tracking Camera
- KAT: J-band Angle Tracking Camera

Metrology
Sidereal Target

Quasi-stationary sources not bright enough at N for high-speed fringe tracking
K-band phase “fed-forward” to N-band FDL
KIN Results

- 47 nearby stars surveyed for exozodi @ 8.5 microns
- Final best calibrated null ~ 0.2 – 0.3%
 (Milan-Gabet et al. 2012; Mennesson et al. 2014)
- Upper limits are of order a few hundred zodis
Conclusions & Lessons Learned from the KIN

• Beam geometry:
 • Single aperture beam small
 • Fringe pattern: null fringe too narrow (too much stellar leak)
 • Long baseline fringes too narrow (integrate over many fringes)
 • Limited baseline rotation capability (Earth rotation)

• Beamtrain:
 • High beam emissivity & low transmission,
 • Residual beam shear between sub-aps
 • Coherent background beam emissivity (coherent emissivity crosstalk)
 • H₂O residual dispersion in unbalanced atmospheric paths → nulls vary across passband

• Four beams used instead of two:
 • Optomechanical complexity
 • Operational complexity – few people could run it
A Rotating-Baseline Nuller, a la Bracewell/TPF-I: The Palomar Fiber Nuller

- Generate one (or more) baselines between sub-apertures on a large telescope
 - Rotate the baseline(s) to modulate the signals from off-axis sources (via K mirror)
 - Small IWA (< \(\lambda/D \)) provides a very unique coronagraphic IWA
- Uses the facility ExAO system as the first-level fringe tracker (no delay lines needed)

\[
\text{IWA} \sim \frac{\lambda}{4b} = \frac{\lambda}{4(D-d)} \rightarrow \frac{1}{4} \frac{\lambda}{D} \\
\text{OWA}_{\text{SM}} \sim \frac{\lambda}{2d} \rightarrow \frac{D}{2d} \left(\frac{\lambda}{D} \right) \rightarrow \frac{5}{3} \left(\frac{\lambda}{D} \right) @ \text{Palomar}
\]

Operates entirely inside normal coronographic IWA

<table>
<thead>
<tr>
<th>System</th>
<th>IWA (mas)</th>
<th>(\lambda/D)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Palomar</td>
<td>33</td>
<td>90</td>
</tr>
<tr>
<td>Keck</td>
<td>13</td>
<td>45</td>
</tr>
<tr>
<td>TMT</td>
<td>4</td>
<td>14</td>
</tr>
</tbody>
</table>

Why: small inner working angle
The Palomar Fiber Nuller (PFN)

Serabyn, Mennesson, Martin, Liewer, Loya, Hanot, Kuhn

• **Palomar ExAO**: stabilizes OPD (~200 – 250 nm rms)
• **Split mirror**: OPD scans and fine OPD matching
• **Pupil Mask**: two elliptical holes on primary image
• **Pupil shear**: match beam intensities
• **K-mirror**: baseline rotation
• **Choppier wheel**: rapid calibration
• **Dispersion correction**: increased injection and BW
• **IR SM fiber combiner**

Mennesson et al., Serabyn et al., Martin et al.
Keeping it Simple: Single-Mode Fiber Combiner

Behind ExAO system →
- Fiber coupling very stable:
- Fringes very stable

Single-beam coupling stable

Focal plane intensity

Single-mode fiber

Common focusing optic (OAP)

Beam 1

Beam 2

SAP

PSF

SM

$(E_1 - E_2)^2$

$E_1 - E_2$

Slow scan:
α Her

Interferometric Signal

Time in s

0 5 10 15 20

0 1 2 3 4 5

0 0.2 0.4 0.6 0.8

Time in s

0 20 40 60

0 0.2 0.4 0.6
Null depth not super-stable

- Stabilize only well enough to stay near the right fringe minimum with ExAO
 - ExAO allows a larger amount of time to be spent near null
 - Can enable $\sim 10^{-4}$ null depth meas. on very bright stars

Null depth seen in raw fringe scan via flat fringe minima
But, N not given by “mean null level”

Stellar diameter measurement:

Model one baseline rotation with K-band nuller

ExAO OPD correction

10^{-3} contrast binary

Null depth seen in raw fringe scan via flat fringe minima
But, N not given by “mean null level”
Measurement of Null Depth from Statistics of the Null: The Null Self-Calibration Algorithm

- One-sided fluctuations near null because $N \propto \varphi^2$
 - Can invert null depth fluctuations
 - Analytically in simple cases
 - $p(N)dn = p(\varphi)d\varphi$; assume Gaussian fluctuations
 - Use statistics in reality
 - Model null distribution to recover astrophysical null
- Relaxes stabilization requirements significantly
 - Enables nulling at shorter wavelengths
 - Analogous to dark speckle techniques

β Peg; K-band

Hanot et al. 2011
Accuracy Improvement with Null Self-Calibration

NSC yields an order of magnitude Improvement in null depth accuracy!
Stellar Measurements with the PFN’s 3.2 m baseline

• High accuracy (a few 0.01 % to 0.1%) has enabled measurements of stellar diameter and binary separation with a very short baseline!

• A bigger telescope & baseline would help!

This is what TPF-I/Darwin aimed at doing!
PFN Dust Observations

• **AB Aur:**
 Herbig Ae/Be pre-main sequence star
Mass: 1.5-10 M_{sun}
Age: 1-4 MYr
Dist: 144 pc

![AB Aur - Subaru](image)

Kuhn et al.

Bright inner dust: Inner spiral or companion?

• **Vega:** shortest baseline obs., but deepest limits (Mennesson et al. 2011)

![Vega - Subaru](image)

• **Hot inner dust sources:** Mini-survey carried out of Absil detections (~ 10 stars): detection limits of N ~ 0.2%
 - Preliminary conclusion is that 2 micron dust is at small radii (in preparation)
The Palomar Fiber Nuller: Performance & Limitations

• High-accuracy NIR nulling \((N \sim \text{few } 10^{-4} \text{ to } 10^{-3} \text{ or so at } K_s) \) enabled by:
 • Lower background than MIR
 • Use of ExAO as cross-aperture fringe tracker
 • SM fiber for WF error term removal
 • Rapid null-depth calibration
 • Null self-calibration algorithm

• Limitations to PFN:
 • Baseline a bit too short
 • Null fringe too broad to see very close in
 • Phase stability is relaxed, but need to make sure that one is on correct fringe
 • Atmospheric refraction for non-horizontal baselines
 • Atmospheric dispersion
 • Integration time a bit too long (> 5 msec to date)

• A nuller on a larger single-aperture telescope could be interesting (esp. TMT/ELT)
LBTI Nulling
Hinz et al., several

• Beam train limitations largely removed:
 • Emissivity much lower
 • No correlated coherent emissivity from optics
 • Shear much easier to deal with, with a pair of round beams

• Greatly reduced H₂O dispersion:
 • common mount
 • horizontal baseline

• Using nulling self-calibration

• Spatial filtering not used
The LBTI MIR Nuller

(Defrere et al. 2016)

Phase jitter $\sim 0.2\text{ rad}$
The LBTI Beamcombiner and Fringes

simple & cold

(Defrere et al. 2016)
Background removal with spatial nodding/chopping

- Background >> star
- Need to remove background to a few ppm
- Need to null to a few 10^{-4} to get to tens of zodi range
Null Self-Calibration employed for LBTI data reduction

Defrere et al. (2016)
Mennesson et al. (2016)
High Nulling Data Quality

η Crv
Defrere et al. (2016)
Performance History and Goals

Danchi et al. 2016
LBTI Nulling

• Nulls to 5×10^{-4} @ 11 microns
 - Almost 10x better than Keck
 • 10x lower background
 • Null self-calibration

• Limitations:
 • Background and background bias fluctuations between on & off beams
 • Background varies spatially & temporally
 • Nod period of ~ once per minute too slow
 • Fringe pattern – broad null fringe
Overall Lessons Learned

• Minimize complexity
• Low emissivity extremely important in the MIR
 • (order of magnitude lower at LBTI)
• Non-interferometric solutions for background removal good
• b/D can be very constraining on a single baseline
 • Long baselines \rightarrow high stellar leak
 • Short baselines \rightarrow can’t get close to center
 • (TPF/Darwin solved this (on paper) with multiple baselines)
• Nulling self-calibration has enabled high accuracy nulling in both the NIR & MIR
 • Dispersed nulling and very rapid readout would help get the most out of NSC
• There is still great potential for high-accuracy NIR nulling/visibility measurements